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Abstract

Almost Ideal Demand System (AIDS) has a flexible functional form that can first

order approximate any sets of demand functions derived from utility maximizing be-

havior. This flexibility, however, comes with a cost of estimating numerously many

parameters, hindering practical use of this model. In this paper, I suggest to use regu-

larization methods on AIDS model to circumvent this curse of dimensionality. Monte

Carlo simulation experiments, following Buse (1994), show that elastic net performs

reasonably well under multicollinearity and sparsity environments.

1 Introduction

Almost Ideal Demand System (AIDS) (Deaton and Muellbauer, 1980) has a very flexible

functional form that can first order approximate any sets of demand functions as its name

suggests. However, this flexibility comes with a huge cost of estimating numerously many

parameters, which makes the model impractical. For example, if the model estimates demand
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for J products, more than J2 parameters have to be estimated to calculate own and cross-

price elasticities of each product.

A traditional way to alleviate this problem is to put restrictions on parameters (Deaton

and Muellbauer, 1980). Theoretical assumptions such as homogeneity and Slutsky symmetry

are often imposed to reduce the number of parameters. Additional restrictions also can be

put with any prior knowledge. For example, if we know that demand of a product does not

depend of some other products, we can put zeros for cross-elasticity estimates.

An alternative way to alleviate the dimensionality issue is grouping products, often called

multi-stage budgeting approach (Hausman et al., 1994; Hausman, 1996). In this model, sim-

ilar products are grouped together in some sensible fashion, then AIDS model is applied for

each group, dramatically reducing the number of parameters. A weakness of this approach,

however, is that it severely restricts the substitution pattern of products without groups.

For example, Hausman et al. (1994) segregated beer into three segments: premium, light,

standard. In this case, price changes of a premium beer do not directly affect demand for

light products. The effect only goes through group substitution; the price change of a pre-

mium product affects price index of premium segment, in turn, affects the demand for light

group, and finally demand for light products. Thus, multi-stage budgeting may inaccurately

estimate inter-group cross-price elasticities if the grouping is wrong.

Either using the traditional way or the alternative way, these two approaches are not

free from critics that they put too strong prior assumptions. Theoretical restrictions such as

homogeneity are often rejected in empirical studies (Deaton and Muellbauer, 1980). Using

prior knowledge to put restrictions or grouping products may result in incorrect estimates

if the prior knowledge is wrong. In this sense, it has been challenging to take advantage of

the full flexibility of AIDS model without taking a risk of making wrong assumptions.

In this regard, I propose using regularization methods such as lasso or elastic net to esti-

mate the AIDS model without making strong prior assumptions, but reducing the number of
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parameters to estimate. The only assumption needed to use these methods is sparsity which

means some true parameters in the model are indeed zero1. Notice that sparsity assumption

is realistic in AIDS model as demand of a product usually does not depend on every other

product but only on several close products. Since lasso or elastic net have model selection

ability to identify zero coefficients, under sparsity assumption, the two methods effectively

reduce the number of parameters to estimate, alleviating the curse of dimensionality in AIDS

model.

In this paper, I run Monte Carlo simulation experiments to investigate the relative per-

formance of elastic net to OLS which is a usual estimator for the linearized AIDS model

(LA/AIDS). In particular, I set three treatments where elastic net may have advantages

over OLS. The first treatment was multicollinearity (MC) of prices, the second was sparsity

(SP), and the last was both multicollinearity and sparsity (MCSP). The simulation results

showed that elastic net estimator performed largely better than OLS estimator in all three

treatments. The parameter choices in the simulations were close to Buse (1994).

The rest of the paper is organized as follows. In chapter 2, I briefly introduce regular-

ization methods: lasso and elastic net. The AIDS model and the problem of “too many

parameters” are discussed in chapter 3. Chapter 4 reports Monte Carlo Simulation results.

Chapter 5 concludes the paper.

2 Regularization methods

2.1 Lasso

Lasso (least absolute shrinkage and selection operator) was proposed by Tibshirani (1996) to

improve prediction accuracy and have model selection ability. Lasso minimizes the residual

sum of squares subject to the sum of absolute values of the coefficients being less than

1Unlike exploiting prior knowledge, sparsity assumption need not specify which coefficients are zeros.
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a constant. Because of the constraint in minimizing the residual sum of squares, Lasso

produces some coefficients that are exactly 0, allowing model selection2. Although Lasso

may increase bias, it more often than not improves overall prediction accuracy than OLS

as it reduces the variance of the estimator, especially when the true model has many zero

coefficients.

Definition 1 Consider a linear regression model with n observation and p predictors x1, ...,xp.

Let y = (y1, ..., yn)′ be the response.

y = β0 + x1β1 + ...+ xpβp + ε

let X = (x1, ...,xp) be the design matrix, where xj = (x1j, ..., xnj)
′. After location and

scale transformation, we can assume that the response is centered and the predictors are

standardized,

n∑
i

yi = 0,
n∑
i

xij = 0 and
n∑
i=1

x2ij = 1, for j = 1, 2, ..., p.

For any fixed non-negative λ the lasso estimator is defined by

β̂(Lasso) = argminβ{L(λ, β)} = |y −Xβ|22 + λ|β|1

where

|β|1 =

p∑
j=1

|βj|

2Lasso has advantages over subset selection methods. Subset selection methods are unstable since it is a
discrete progress; smaller changes in the data can result in very different model being selected. In contrast,
lasso is a continuous shrinkage model that are less sensitive to changes in a data set.
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2.2 Elastic net

Lasso has some weaknesses when the independent variables are highly correlated. If there

is a group of variables that have high pairwise correlation, Lasso tends to select only one

variable from the group and drop the others. As an attempt to overcome the weakness,

Zou and Hastie (2005) proposed elastic net which has an additional L2 penalty term in

minimizing the residual sum of square. By adding this, elastic net tend to select all variables

in an important group even though the variables are highly correlated.

2.2.1 Naive elastic net

Definition 2 For any fixed non-negative λ1, λ2 the naive elastic net is defined by

β̂(naive elastic net) = argminβ{L(λ1, λ2, β)} = |y −Xβ|22 + λ2|β|22 + λ1|β|1

where

|β|22 =

p∑
j=1

β2
j , |β|1 =

p∑
j=1

|βj|

Although elastic net uses an additional L2 norm in the penalization, it dose not impose

higher estimation cost since the estimation can be reduced into Lasso. The residual sum of

square and the L2 norm can be combined and treated as a new residual sum of a new data

set. Then Lasso technique can be applied to estimate elastic net.

2.2.2 Elastic net

Since naive elastic net uses additional L2 penalty term, it shrinks the estimates to zero faster

than Lasso. Hence, we need to correct this additional bias by inflating the estimates. This

finally ends up with elastic net estimator.
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Definition 3

β̂(elastic net) = (1 + λ2)β̂(naive elastic net)

3 Almost Ideal Demand System(AIDS)

3.1 Specification of AIDS

Almost Ideal Demand Estimation (AIDS) is a model for estimating demand for differenti-

ated products. This model specifies a functional form which is flexible enough to (locally)

approximate any cost function (i.e. expenditure function) derived from utility maximizing

behavior. Moreover, the model uses a specific class of preferences that allows exact aggrega-

tion over individual consumer demand. This class of preferences known as PIGLOG can be

represented by a cost function c(u, p) for given utility u and price vector p,

logc(u, p) = (1− u)log{a(p)}+ ulog{b(p)}a

In order for this functional form to be flexible enough to approximate any preferences, it must

have enough parameters so that, at any single point, ∂c/∂pi, ∂c/∂u, ∂2c/∂pi∂pj, ∂
2c/∂u∂pi,

and ∂2c/∂u2 can be set equal to any arbitrary cost function. Deaton and Muellbauer (1980)

take

log{a(p)} = α0 +
∑
k

αklogpk +
1

2

∑
k

∑
j

γ∗kjlogpklogpj

log{b(p)} = log{a(p)}+ β0
∏
k

pβkk
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so that the AIDS cost function is written

logc(u, p) = α0 +
∑
k

logpk +
1

2

∑
k

∑
j

γ∗kjlogpklogpj + uβ0
∏
k

pβkk (1)

This cost function is homogeneous in p if the parameters satisfy
∑

i α = 1,
∑

j γ
∗
kj =

∑
k γ
∗
kj

=
∑

j βj = 0.

A merit of this specification is that it leads to a neat form of budget share function. By

using Shephard’ Lemma ∂c(u, p)/∂pi = qi and multiplying both sides by pi/c(u, p), we get

∂logc(u, p)

∂logpi
=

piqi
c(u, p)

= wi

where wi is the budget share of good i. By differentiating (1), the budget share becomes

wi = αi +
∑
j

γijlogpj + βiuβ0
∏

pβkk (2)

where γij =
1

2
(γ∗ij + γ∗ji) (3)

Since the cost function c(u, p), by definition, equals total expenditure x, the utility u can

be recover by inverting this equality c(u, p) = x. The utility is u = v(p, x), where v(., .) is

the indirect utility function. Substituting u to (2) completes the AIDS demand functions in

budget share form,

wi = αi +
∑
j

γijlogpj + βilog{x/P} (4)

where P is a price index (often called exact price index) defined as

logP = α0 +
∑
k

αklogpk +
1

2

∑
j

∑
k

γkjlogpklogpj (5)
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and the restrictions are now

n∑
i=1

αi = 1 ,
n∑
i=1

γij = 0 ,
n∑
i=1

βi = 0 (6)

∑
j

γij = 0 (7)

γij = γji (8)

(6) means add-up constraints, (7) homogeneity , (8) symmetry.

3.2 Estimation of AIDS

The model can be estimated by substituting (5) to (4) and estimating the following non-

linear budget share equation with error terms by MLE or other methods. All the parameters

can be identified, provided that the number of observation large enough.

wi = (αi − βiα0) +
∑
j

γijlogpj + βi

(
logx−

∑
k

αklogpk −
1

2

∑
k

∑
j

γkjlogpklogpj

)
(9)

Deaton and Muellbauer (1980) showed that the estimation can be done in an easier way

if the prices are closely collinear. In this case, the exact price index P can be adequately

approximated as proportional to some known index P ∗, for example, Stone’s index: logP ∗ =∑
wklogpk. By plugging in P ≈ φP ∗, the budget share equation (4) becomes

wi = (αi − βilogφ) +
∑
j

γijlogpj + βilog(x/P ∗) (10)

and can be estimated by a linear model such as OLS 3. This linearized specification is often

called linear approximated AIDS (LA/AIDS). Given a data set, logpj and log(x/P ∗) can be

calculated from prices and incomes. The last step is to estimate φ. Let t denote each time

3When imposing cross-equation restrictions such as symmetry, SUR or 3SLS can be applied.
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period when the budget share is observed. then we have

lnPt = α0 +
∑
k

αklogpkt +
1

2

∑
j

∑
k

γkjlogpktlogpjt

lnP ∗t =
∑
k

wktlogpkt

As conventionally being done, it’s possible to normalize all prices into 1(unity) at the

base time period, say t = 1. Then lnP1 = α0, lnP
∗
1 = 0. Thus, lnP1 − lnP ∗1 = lnφ = α0.

4

Deaton and Muellbauer (1980) argued that α0 can be pre-set with a priori value, since the

parameter can be interpreted as the outlay required for a minimal standard of living.

3.3 Estimation issues in AIDS

As discussed above, AIDS is a flexible model that is grounded in a well-structured analytics

and accommodates aggregations. So it has been a popular choice for many applied demand

analyses. However, the advantages do not come without problems. First of all, the model

has a large number of parameters in it, which are unlikely to be well determined with a usual

size of data set. Specifically, if there are K number of products to estimate, then the number

of parameters becomes 2K +K2 which grows very fast in K.

Deaton and Muellbauer (1980) suggest to put some retrictions to reduce the number

of parameters. One obvious choice is to put theoretical restrictions such as homogenity

and symmetry:(6), (7) and (8). These restrictions reduce the number of parameters into

2(K−1)+ (k−1)+(k−2)
2

, but it still grows fast in K. Deaton and Muellbauer (1980) also suggest

to put any restriction on γij with prior knowledge. Since γij (i 6= j) has approximately the

same sign as the compensated price elasticity, one can put γij = 0 for independent products

4Of course, in reality, lnφ depends on the time period and cannot be a constant (Alston et al., 1994),
causing inconsistency in linearized AIDS. However, this is not the main focus of my paper. I will focus on the
performances of elastic net and OLS estimators under the same condition. For readers who are interested in
the inconsistency problem, refer to Alston et al. (1994); Buse (1994); Pashardes (1993)
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i and j.

Another way to reduce the number of parameters is grouping products in a sensible

way and apply AIDS to each group (Multi-stage budgeting). By doing this, one can focus

the substitution patterns only in each group, dramatically reducing the number of parame-

ters. For example, Hausman et al. (1994) segregated beers into three categories (light mild,

premium) and estimated AIDS model for each category. This method, however, severely re-

stricts the substitution patterns of products in different groups. For example, price increase

of a light beer does not directly affect the demand of a premium beer . The effect only goes

through group substitution; the price increase of a light beer increases the price index of

light beer, making the premium group more attractive and finally increases the demand for

each product in the premium segment.

All these methods to reduce the number of parameters heavily depend on strong prior

assumptions which may turn out to be incorrect. Deaton and Muellbauer (1980) mentioned

that the theoretical restrictions such as homogeneity are often rejected in empirical studies.

Other prior knowledge is not even contestable. Which products are independent? How

can we ex-ante segregate product spaces into smaller groups in a sensible fashion before

estimating the cross price elasticities?

In this regard, I suggest to use elastic net, a regularization method, to estimate AIDS

model with less assumptions. First, I assume that the prices are close to collinear, which is

a standard assumption for LA/AIDS. The second assumption is sparsity, which means that

there are parameters whose true values are exactly zero. In AIDS model, sparsity can be

interpreted that some products are independent of each other (γij = 0 for some i and j).

These two assumptions are weaker than traditional assumptions in that they do not ex-ante

specify any substitution patterns.

I expect that elastic net have two advantages over OLS estimator. First, elastic net will

be more robust to multicollinearity of prices as it includes L2 penalty terms. Second, it will
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identify zero coefficients in the outcomes. These properties are well demonstrated in Zou and

Hastie (2005), and the current paper is an application of elastic net to a demand estimation

environment. In the next chapter, I run Monte Carlo simulation experiments to compare

the performances of OLS and elastic net estimators.

4 Monte Carlo Simulation

In this chapter, I report Monte Carlo simulation results of OLS and elastic net for AIDS

estimation. The simulation was run in three treatments. In the first treatment, the true

model do not have zero coefficients, but the prices have multicollinearity problem (MC). In

the second treatment, the prices are not highly correlated but sparsity (SP) is assumed with

some parameters being zero. The third treatments assumes multicollinearity and sparsity

(MCSP) at the same time.

4.1 The treatments of simulation

For the simulation, I closely followed the setting of Buse (1994) who did a thorough simulation

on LA/AIDS model. In his setting, demands of 4 products are estimated by LA/AIDS model

(10) and parameters are chosen consistent with consumer theories (homogeneity, symmetry).

Following equations are reminders for share function and log expenditure.

wi = αi +
∑
j

γijlogpj + βiuβ0
∏

pβkk (11)

lnc(u, p) ≡ lnx = lnP + uβ0
∏
k

pβkk (12)

Buse (1994) set u = 1 and β0 = 1 and unit prices, so that ln(x/P ) = 1 at the base period.

With this preset values we get wi = αi+βi, so only two of the variable can be freely defined.

I set wi = (0.35, 0.2, 0.2, 0.25) and αi = (0.15, 0.1, 0.3, 0.45) following Buse (1994). For γij,

11



only 6 free parameters can be chosen freely and others should be determined by homogeniety

and symmetry restrictions. In the non-sparsity treatment, I set all of those parameters are

non-zero while in the sparsity (SP) treatment, some of the parameters are set to be zero.

The number of parameters are 24. For convenience, I will use a matrix form of parameters.



α1 γ11 γ12 γ13 γ14 β1

α2 γ21 γ22 γ23 γ24 β2

α3 γ31 γ32 γ33 γ34 β3

α4 γ41 γ42 γ43 γ44 β4


.

For generating regressors, I generated log prices through AR(1) process with a strong

persistence, as often observed in the real data. I chose two types of correlations of the prices:

high correlation(MC) and no correlation. I also generated log expenditure (log x) from the

AIDS expenditure function (12) by setting β0 = 1 and letting ut
5

ut = 1.0 + vt where vt ∼ N(0, 10−4).

With all these parameters and regressors, I generated 100 observations (n) of each budget

share(wi) from the equation (11). By construction, the budget shares should sum up to 1.

Finally, I added error terms εitto each budget share, generating observed budget share w̃i.

This also should add up to 1, imposing
∑

i εit = 0. Therefore, only 3 error terms need to be

generated. I set the correlation among these 3 error terms ρ12 = 0.5, ρ13 = 0.6 and ρ23 = 0.7.

6 The variance of the error terms was set 2 ∗ (10−6) to have reasonable variation in the

budget shares. All these numbers and the data generating process are very similar to Buse

(1994) except I have sparsity cases.

5Buse (1994) mentions that this specification introduce variation in utility that might be realistically
expected in a time series context. On the contrary, in Alston et al. (1994)’s study, u was fixed at 0.5

6This correlation actually is not important for estimating each equation separately. However, these take
a role when someone wants to estimate the 4 equations at the same time with SUR or 3SLS
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4.2 Multicollinearity(MC)

In this treatment the prices are collinear and all the parameters are non-zero. The correlation

of log prices are set as r12 = 0.99, r13 = r23 = 0.98, r14 = r24 = r34 = 0.97, following Buse

(1994). This magnitude of correlation in prices are common, and Stone’s price index P ∗ can

be a good approximation of exact price index P with this high collinearity. The following is

the true parameters in this treatment.



α1 γ11 γ12 γ13 γ14 β1

α2 γ21 γ22 γ23 γ24 β2

α3 γ31 γ32 γ33 γ34 β3

α4 γ41 γ42 γ43 γ44 β4


=



0.15 0.0875 −0.0300 −0.0100 −0.0475 0.2

0.1 −0.0300 0.0700 −0.0200 −0.0200 0.1

0.3 −0.0100 −0.0200 0.0500 −0.0200 −0.1

0.45 −0.0475 −0.0200 −0.0200 0.0875 −0.2


In this specification, I expect that OSL will suffer from Multicollinearity but elastic

net would be more stable than OLS since it has the property of the Ridge equation. The

following graph shows price changes in the data generation. The prices are highly correlated

and persistent. Since prices are following AR(1) process, it tends to revert to zero. In

this specific realization, the log prices move around between 0.10 ∼ -0.30, which is quite

reasonable changes consistent with most price data sets7.

7For example, the prices of agricultural products or animal products which demand is often studied wtih
AIDS model have similar price changes as the simulation.
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Figure 1: Prices

Figure2 (left) shows the series of budget share. Since the prices are moving in the

same directions, the substitution effect is minimal, and the budget share does not change

volatilely. Figure 2 (right) shows the observed budget share after error term is added. The

maximum deviation of observed share form the true share did not exceed 2% and in average

the deviation in general was very small.

Figure 2: Budget Share

With the generated regressors and error terms, I estimated the parameters with OLS and

Elastic net 100 times each. For elastic net, I choose small portion of L2 norm as λ1
λ2+λ1

= 0.9,

and the tuning parameters were set to have least MSE by 10-fold cross validation. Figure 3

shows the box-plots of estimated parameters from OLS and elastic net. It’s apparent that

the OLS estimators have much bigger variance due to multicollinearity of the regressors.
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Specifically, this model has two sources of Multicollinearity. First, as I mentioned, the prices

are highly collinear. On top of this, I found that the constant term and the log{x/P} terms

are collinear since the income and the price index does not change dramatically over time.

Elastic net, however, is quite robust to multicollinearity as it has the property of Ridge

regression. Even though it is a biased estimators, the bias seems more bearable than the

huge variance of OLS estimators in this treatment.

Figure 3: Box-plots of estimates(MC)

The box plots of OLS and elastic net estimators. The locations of the numbers inside the plot are

the values of true parameters. The order (1-24) follows α., γ.1, γ.2, γ.3, γ.4, β.

Of course, this result does not mean that elastic net always performs better than OLS.

Basically OLS is an unbiased estimator, thus it gets the true parameters right in average.

Therefore, when having enough number of observations to reduce the variance significantly,

there is no reason to avoid OLS. In addition, we know that elastic net is a biased estimator, so

it is easy to find some environments where OLS can do better than elastic net. I could reduce

the variance of OLS estimators by either increasing the variation of the regressors or reducing

the variance of error terms. However, in order for OLS estimator to have significantly better
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outcome, it requires unrealistic modification in the data. For example, I needed to increase

variation of the regressors (price or income) more than 10 times, which leads the budget

shares of each products to fluctuate severely. When I tried to reduce the variance of error

terms, it required me to reduce the error term more than 10 times smaller to the point that

the error term is almost negligible.

4.3 Sparsity(SP)

In this treatment, the prices are no longer collinear but some parameters are truly zero. I

generate completely independent AR(1) prices which is very unrealistic. In addition I set ten

times bigger variation in the utility (u ∼ N(0, 10−3)) so that the multicollinearity of constant

and the expenditure term can be alleviated. Finally, I set some parameters whose values are

exact zero. Specifically, I set γ13 = γ14 = γ23 = 0 which means these are (approximately)

independent goods. Thus, the parameters are



α1 γ11 γ12 γ13 γ14 β1

α2 γ21 γ22 γ23 γ24 β2

α3 γ31 γ32 γ33 γ34 β3

α4 γ41 γ42 γ43 γ44 β4


=



0.15 0.0875 −0.0875 0 0 0.2

0.1 −0.0875 0.0700 0.0175 0 0.1

0.3 0 0.0175 0.0500 −0.0675 −0.1

0.45 0 0 −0.0675 0.0675 −0.2


In this treatment, I expect that OLS will do better than the previous treatment since SP

treatment does not have severe multicollinearity. However, it is clear that OLS will never

choose any zero estimate. In contrast, I expect that the elastic net will choose several zero

estimates. The figure 4 shows the box-plots of the estimates of the two estimators. As

expected, the OLS has much less variance compared to MC treatment. However, it still have

higher variances than elastic net estimators. One obvious reason for this higher variance is

that OLS overfits the model by estimating true-zero parameters. In this treatment, many

16



of the true parameters are zero, so model selection helps to reduce the variance of the

estimators. Indeed, elastic net has much less variance than OLS as it drops some regressors

in estimation.

Figure 4: Box-plots of estimates(SP)

Elastic net, however, does not always choose the true model. For example, it selects

β2, β3 (22, 23) to be zero many times although they are non-zero coefficients. I counted the

frequency of choosing the zero parameters in following matrix. The left matrix is true values

of coefficients and the right matrix means the frequency that elastic net choose zeros out

of 100 simulation. It is not surprising that elastic net does not always select the true zero

value. First of all, elastic net is not selection consistent (Zou and Zhang, 2009). Second,

the number of observations was only 100 (for each equation). With finite sample size, model

selection methods can fail to identify the true model.
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

0.15 0.0875 −0.0875 0 0 0.2

0.1 −0.0875 0.0700 0.0175 0 0.1

0.3 0 0.0175 0.0500 −0.0675 −0.1

0.45 0 0 −0.0675 0.0675 −0.2


→



0 0 0 43 44 1

0 0 0 1 2 95

0 3 1 0 0 92

0 54 31 0 1 13


4.4 Multicollinearity and Sparsity (MCSP)

The last treatment includes both multicollinearity and sparsity. Presumably, this is the most

common situation in the real world data, since the price are often highly collinear, and the

demand of a product is usually affected by only a few close products. In this treatment, I

used the correlation of the MC treatment and the same parameters in the SP treatment.

Theoretically, this treatment is the most favaorable to elastic net relative to OLS.

Figure 5: Box-plots of estimates(MCSP)

Figure 5 is the box plots of the coefficients of the two estimators. First of all, we can
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see that OLS estimators has higher variances as expected. Since sparsity of the coefficient

does not affect OLS estimator, the box plot of OLS is almost the same with MC treatment.

The elastic net has similar variances as in MC, but its bias is much small than MC. This is

because there are many true zero values, the elastic net easily choose the zeros with smaller

penalty terms. I counted the number of elastic net choosing zero coefficients. Although

elastic net is not selection consistent, we can see that the elastic net tends to choose the true

zeros quite frequently in MCSP treatment.



0.15 0.0875 −0.0875 0 0 0.2

0.1 −0.0875 0.0700 0.0175 0 0.1

0.3 0 0.0175 0.0500 −0.0675 −0.1

0.45 0 0 −0.0675 0.0675 −0.2


→



0 1 0 21 60 0

0 3 1 17 20 25

0 42 40 1 2 16

0 77 69 16 19 2


Overall, elastic net shows better performance than OLS estimators in the environment

of multicollinearity and sparsity.

5 Conclusion

In this paper, I compare the estimation performance of OLS and elastic net for LA/AIDS

model in several treatments. The Monte Carlo simulation experiments show that elastic net

do a better job than OSL under multicollinearity and sparsity environment.

One might argue that LA/AIDS is not as accurate as the full model of AIDS, thus, elastic

net is not useful in estimating the AIDS model. However, LA/AIDS model is still popular

due to its tractability. Moreover, elastic net is not restricted to a linear model but it can be

also applied to MLE type of estimators by adding L1 and L2 penalty terms. Future research

may investigate the relative performance of elastic net or other regularization methods on
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the full model of AIDS estimation.
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